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Acoustic travel-time tomography allows one to reconstruct temperature and wind velocity fields in
the atmosphere. In a recently published paper �S. Vecherin et al., J. Acoust. Soc. Am. 119, 2579
�2006��, a time-dependent stochastic inversion �TDSI� was developed for the reconstruction of these
fields from travel times of sound propagation between sources and receivers in a tomography array.
TDSI accounts for the correlation of temperature and wind velocity fluctuations both in space and
time and therefore yields more accurate reconstruction of these fields in comparison with algebraic
techniques and regular stochastic inversion. To use TDSI, one needs to estimate spatial-temporal
covariance functions of temperature and wind velocity fluctuations. In this paper, these
spatial-temporal covariance functions are derived for locally frozen turbulence which is a more
general concept than a widely used hypothesis of frozen turbulence. The developed theory is applied
to reconstruction of temperature and wind velocity fields in the acoustic tomography experiment
carried out by University of Leipzig, Germany. The reconstructed temperature and velocity fields are
presented and errors in reconstruction of these fields are studied. © 2007 Acoustical Society of
America. �DOI: 10.1121/1.2756798�

PACS number�s�: 43.28.We, 43.28.Vd, 43.20.Dk �RR� Pages: 1416–1425
I. INTRODUCTION

Knowledge about temperature and wind velocity fields
is important in many disciplines, e.g. boundary layer meteo-
rology, theories of turbulence, and studies of electromagnetic
and acoustic wave propagation in the atmosphere. A conven-
tional way to measure the temperature and wind velocity is
to use in situ sensors. However, such measurements can pro-
vide the data only at some spatial points. To measure the
temperature and velocity fields with high resolution, a very
large number of sensors is required. This will not only in-
crease the cost of measurements but also distort the original
fields. This problem can be overcome by using acoustic to-
mography.

Acoustic travel-time tomography of the atmosphere al-

lows one to reconstruct temperature T̃�R� and wind velocity

Ṽ�R� fields in a tomographic volume or area given positions
of sound sources and receivers and travel times ti

tr of sound

propagation between them. Here, R= �x ,y ,z� is a vector in
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the Cartesian coordinate system and i=1,2 , . . . , I, where I is
the number of data ti

tr, i.e., the number of sound propagation
paths between sources and receivers.

In the past decade, several acoustic travel-time tomog-
raphy experiments have been carried out in the lowermost
few meters of the atmosphere.1–9 Further, some works were
done on numerical simulation of acoustic tomography of the
atmosphere.10–13 One of the main problems in both tomogra-
phy experiments and numerical simulations is to find a good

inverse algorithm for reconstruction of T̃ and Ṽ fields. Most
of the algorithms used so far employed a partition of a to-

mographic volume into grid cells where the values of T̃ and

Ṽ are constant, and a subsequent solution of a set of alge-
braic equations.3–9,11,12,14,15 Numerical simulations have
shown12 that these algebraic algorithms can give a good re-

construction of T̃ and Ṽ fields if the number of the grid cells
is small enough so that a corresponding inverse problem is
overdetermined �the number of equations is greater than the

number of unknowns�. However, in two-dimensional �2D�
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tomography experiments, for example, there are three con-
tinuous fields to reconstruct �temperature and two compo-
nents of velocity�, whereas the number of data is limited. �A
large number of sources and receivers can distort the T̃ and Ṽ
fields inside a tomographic area.� Therefore, the number of

grid cells where T̃ and Ṽ are reconstructed is relatively small
�a few dozen or less�.

To increase spatial resolution of the reconstructed tem-

perature T̃ and velocity Ṽ fields, one can use a stochastic
inversion �SI�, which is appropriate for solutions of inverse
problems involving continuous fields.2,16 In SI, the increase
in spatial resolution comes with a price: One needs to know
spatial covariance functions BTT

s �R1 ,R2� and Bij
s �R1 ,R2� of

temperature and velocity fluctuations at the time moment t of
an experiment. Here, s stands for spatial, and i and j indicate
the components of wind velocity vector. Recent studies have
shown13,17 that, in SI, the use of different covariance func-
tions �exponential, Gaussian, von Kármán, and some others�
results in the reconstructed temperature and velocity fields
which are nearly identical �with a relationship between cor-
relation lengths that provides the equality of the integral
lengths of these functions, see Ref. 18 for details�. Therefore,
one of these covariance functions, e.g., Gaussian, can be

used in SI. Note that in SI the accuracy of T̃ and Ṽ recon-
struction increases with the increase of the number I of data.

To increase the number of data without increasing the
number of sources and receivers, a time-dependent stochastic
inversion �TDSI� in acoustic tomography of the atmosphere
was proposed in Ref. 19. In TDSI, the travel times ti

tr are
measured repeatedly at the time moments t1 , t2 , . . . , tn. Then,

the fields T̃�R , t� and Ṽ�R , t� are reconstructed given n sets
of ti

tr, positions of sources and receivers, and assuming that
the spatial-temporal covariance functions of temperature and
wind velocity fluctuations, BTT�R1 , t1 ;R2 , t2� and
Bij�R1 , t1 ;R2 , t2�, are known. In Ref. 19, these spatial-
temporal covariance functions were determined assuming
that turbulence is frozen,20 i.e., temperature and wind veloc-
ity fluctuations are advected with the constant wind velocity
V0. Numerical simulation of acoustic tomography of the at-
mosphere showed that TDSI allows better reconstruction of
temperature and velocity fields than SI does.19

A general idea to use spatial-temporal covariances in SI
is known in the literature. For example, this idea has been
successfully used in the satellite altimetry of the ocean sur-
face level.21–23 TDSI in acoustic tomography of the atmo-
sphere is somewhat similar to methods used in the satellite
altimetry. However, a mathematical apparatus of TDSI is dif-
ferent from that used in altimetry and was developed in Ref.
19.

The main goal of the present paper is further develop-
ment of a mathematical apparatus of TDSI and the use of the

developed theory in the reconstruction of the T̃ and Ṽ fields
in the acoustic tomography experiment STINHO �STructure
of turbulent transport under INHOmogeneous surface condi-
tions� carried out by University of Leipzig, Germany.9 First,
we derive analytical formulas for BTT�R1 , t1 ;R2 , t2� and
Bij�R1 , t1 ;R2 , t2� for the case of locally frozen turbulence

which is a generalization of the hypothesis of frozen turbu-
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lence. The obtained formulas for BTT�R1 , t1 ;R2 , t2� and
Bij�R1 , t1 ;R2 , t2� account for the variance of wind velocity
fluctuations �V and, hence, are much more realistic than
those for the case of frozen turbulence where �V is tacitly
assumed 0. Second, we determine errors in the input data for
TDSI. Finally using these errors and formulas for
BTT�R1 , t1 ;R2 , t2� and Bij�R1 , t1 ;R2 , t2� for locally frozen tur-

bulence, we apply TDSI for reconstruction of T̃ and Ṽ fields
in the acoustic tomography experiment STINHO. Note that
this is the first reconstruction of the temperature and wind
velocity fields in an acoustic tomography of the atmosphere
experiment using TDSI.

The paper is organized as follows. Section II describes
starting equations for acoustic tomography and the TDSI al-
gorithm. Formulas for spatial-temporal covariance functions
of temperature and wind velocity fluctuations for locally fro-
zen turbulence are derived in Sec. III. Using the residual
analysis, the errors in the input data for TDSI are obtained in
Sec. IV. In Sec. V, new methodology is applied to reconstruc-
tion of temperature and velocity fields in the acoustic tomog-
raphy experiment STINHO. The conclusions are presented in
Sec. VI.

II. STARTING EQUATIONS

In this section, starting equations for acoustic travel-time
tomography of the atmosphere and a brief description of
TDSI are presented. A detailed description of TDSI can be
found in Ref. 19.

Let ũ�R , t�, ṽ�R , t�, and w̃�R , t� be x, y, and z compo-
nents of the random, three-dimensional �3D� vector of wind

velocity Ṽ�R , t�:

Ṽ�R,t� = ũ�R,t�ex + ṽ�R,t�ey + w̃�R,t�ez. �1�

Here ex, ey, and ez are the unit vectors along the x, y, and z
axes, respectively. The adiabatic sound speed cL, temperature

T̃, and wind velocity Ṽ within a tomographic area at the time
moment t can be represented as sums of their spatially aver-
aged values c0�t�, T0�t�, V0�t�= �u0�t� ,v0�t� ,w0�t�� and
their fluctuations c�R , t� ,T�R , t� ,V�R , t�= �u�R , t� ,v�R , t�,
w�R , t��:

cL�R,t� = c0�t� + c�R,t�,T̃ = T0�t� + T�R,t� ,

�2�
Ṽ�R,t� = V0�t� + V�R,t� .

Note that tomography allows one to reconstruct acoustic vir-

tual temperature, which we denote as T̃. It is related to the
thermodynamic temperature Tth by the following relation-

ship: T̃�Tth�1+0.511q�, where q is the specific humidity of
air.18

We will assume that the spatially averaged values are
equal to the mathematical expectations of the random fields

at each spatial point at the time moment t, i.e.,
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�cL�R,t�� = c0�t�, �T̃�R,t�� = T0�t�, �Ṽ�R,t�� = V0�t� .

�3�

Hereinafter, the angular brackets � � denote averaging over an
ensemble of realizations. Note that it follows from Eqs. �2�
and �3� that the mathematical expectations of the fluctuations
at any point R and time t are equal to zero.

Most acoustic tomography arrays used so far were 2D.
In Ref. 19 TDSI was developed for the 2D case in which
sources, receivers, and sound propagation paths are located
in one plane. For concreteness, we will assume that this
plane coincides with the �x ,y� plane. In this case, the travel
times of sound propagation between sources and receivers
are given by linearized equations of the forward problem of
acoustic travel-time tomography of the atmosphere19:

ti
tr�t� =

Li

c0�t�
�1 −

u0�t�sxi + v0�t�syi

c0�t�
	 −

1

c0
2�t�

�

Li

dl� c0�t�
2T0�t�

T�R,t� + u�R,t�sxi + v�R,t�syi� .

�4�

Here Li is the distance between a source and receiver, sxi

=cos �i, and syi=sin �i, where �i is the angle between ex and
the direction of sound propagation. Note that in the linear-
ized forward problem the paths of sound impulses can be
approximated by straight lines.

The inverse problem of 2D acoustic travel-time tomog-
raphy of the atmosphere is to reconstruct the mean fields
T0�t�, u0�t�, v0�t� and their fluctuations T�R , t�, u�R , t�,
v�R , t� given the travel times ti

tr�t�, the angles �i, and the
distances Li. This reconstruction consists of two steps. First,
T0�t�, u0�t�, and v0�t� are reconstructed using the least-
squares estimation. Then, the fluctuations T�R , t�, u�R , t�,
and v�R , t� are reconstructed with the help of TDSI.

When reconstructing T0�t�, u0�t�, and v0�t�, the integral
term on the right-hand side of Eq. �4� is neglected. In this
case, Eq. �4� can be rewritten in a matrix notation:

Gf = b . �5�

Here the elements of the column-vector b are known �can be
calculated from experimentally measured values of ti

tr�t� and
Li�:

bi =
ti
tr�t�
Li

, �6�

the unknown column-vector f has three elements

f1 =
1

c0�t�
, f2 =

u0�t�
c0

2�t�
, f3 =

v0�t�
c0

2�t�
, �7�
and the matrix G is given by
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G = 1 − cos �1 − sin �1

� � �
1 − cos �I − sin �I

� . �8�

Then, the overdetermined inverse problem for the elements
of vector f �I is assumed to be greater than 3� is solved using
the least-squares estimation:

f̂ = �GTG�−1GTb . �9�

Here f̂ is the optimal least-squares estimation of f. The opti-
mal estimations ĉ0, û0, v̂0 of the mean fields c0, u0, v0 can

easily be calculated from f̂ using Eq. �7�. The mean tempera-

ture T̂0 can be obtained from ĉ0 using the following formula:

c0
2 = �RaT0, �10�

where ��1.41 is the ratio of the specific heats and Ra is the
gas constant for dry air.

The estimated values ĉ0, T̂0, û0, and v̂0 are substituted
back into Eq. �4�. The resulting equation can be written in
the following form:

qi�t� = 

Li

dl� ĉ0�t�

2T̂0�t�
T�R,t� + u�R,t�sxi + v�R,t�syi� ,

�11�

where qi�t� are given by

qi�t� = Li�ĉ0�t� − û0�t�sxi − v̂0�t�syi� − ĉ0
2�t�ti

tr�t� . �12�

After the reconstruction of the mean fields, qi�t� are known.
Equation �11� is a starting equation for TDSI whose goal

is to reconstruct T�R , t�, u�R , t� and v�R , t� given the values
of qi�t�, �i, and Li. The qi�t� are known at the time moments
t1 , t2 , . . . , tn of an experiment and are used to form the vector
d of the input data for TDSI:

d = �q�t1�;q�t2�; . . . ;q�tn�� . �13�

Here q�tk� are column vectors with elements given by Eq.
�12�, and the semicolons indicate that these q are arranged in
the column vector d.

Let m�t� be a column vector of the fluctuations being
reconstructed at certain spatial points R1 , . . . ,RJ, where J is
a total number of points:

m�t� = �T�R1,t�; . . . ;T�RJ,t�;u�R1,t�; . . . ;u�RJ,t�;

v�R1,t�; . . . ;v�RJ,t�� . �14�

Note that in TDSI the fluctuations can be reconstructed at
any time moment t. Of course, one can expect a good recon-
struction of T�R , t�, u�R , t�, and v�R , t� fields if t is within
the time interval �t1 , tn� or close to it. In TDSI, the optimal
reconstruction m̂�t� of m�t� is given by the following for-
mula:

m̂�t� = CmdCdd
−1d , �15�

where Cmd= �mdT� is a model-data covariance matrix and
Cdd= �ddT� is a data covariance matrix given by Eqs.
�18�–�21� from Ref. 19. The elements of these matrices are

expressed in terms of the integrals along the sound propaga-
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tion paths between sources and receivers, whose integrands
contain the spatial-temporal covariance functions of tem-
perature and wind velocity fluctuations, BTT�R1 , t1 ;R2 , t2�
and Bij�R1 , t1 ;R2 , t2�. In an experiment, the components qi of
the vector d are always known with some uncertainties �ob-
servation noise� which we denote as �qi. As a result, the
matrix Cdd has additional terms on its main diagonal19 equal
to the variances of these uncertainties �qi

2 = ��qi
2 �.

Expected squared errors of the estimation m̃�t� are ele-
ments on the main diagonal of the error covariance matrix
C��, given by19

C�� = Cmm − CmdCdd
−1Cmd

T , �16�

where Cmm= �mmT� is a model covariance matrix.
Thus, in order to implement TDSI for reconstruction of

temperature and wind velocity fields, one needs to know
spatial-temporal covariance functions BTT�R1 , t1 ;R2 , t2� and
Bij�R1 , t1 ;R2 , t2� and the variances �qi

2 . These covariance
functions and variance will be calculated in the next two
sections.

III. LOCALLY FROZEN TURBULENCE

In this section, analytical formulas for the spatial-
temporal covariance functions of temperature and wind ve-
locity fluctuations, BTT�R1 , t1 ;R2 , t2� and Bij�R1 , t1 ;R2 , t2�,
are derived for the case of locally frozen turbulence.

For this derivation, we will need particular forms of the
spatial covariance functions of temperature and wind veloc-
ity fluctuations BTT

s �R1 ,R2� and Bij
s �R1 ,R2�. We will assume

that turbulence is statistically isotropic and homogeneous,
and that the spatial covariance functions of temperature and
longitudinal velocity fluctuations are given by Gaussian
functions. The components of the tensor Bij

s �R1 ,R2� can be
calculated from the covariance function of longitudinal ve-
locity fluctuations using Eqs. �6.34� and �6.35� in Ref. 18. As
a result, we obtain the following spatial covariance functions
of temperature and velocity fluctuations:

BTT
s �R1,R2� = �T

2 exp�−
�2

lT
2 	 , �17�

Buu
s �R1,R2� = �V

2 exp�−
�2

lV
2 	�1 −

�y
2 + �z

2

lV
2 	 , �18�

Buv
s �R1,R2� = �V

2 exp�−
�2

lV
2 	�x�y

lV
2 . �19�

Here, �T and �V are the standard deviations of temperature
and velocity fluctuations, lT and lV are their correlation
lengths, and �=R2−R1= ��x ,�y ,�z�. Other components of
the tensor Bij

s �R1 ,R2� are given by formulas similar to those
for Buu

s �R1 ,R2� and Buv
s �R1 ,R2�.

A hypothesis of locally frozen turbulence is formulated
in Ref. 24. According to this hypothesis, during a relatively

small time interval �, velocities Ṽ�R , t� can be considered as
constant in the vicinity of each spatial point. This allows one
to express the temperature field T�R , t2� at the time moment

t2 in terms of the temperature field at the time moment t1:

J. Acoust. Soc. Am., Vol. 122, No. 3, September 2007
T�R,t2� = T�R − Ṽ�R,t1��,t1� , �20�

where �= t2− t1. Note that in Eq. �20� the velocity Ṽ is a

random function of R and t1. If in Eq. �20� Ṽ were constant,
this equation would become a formula for frozen turbulence
which has been widely used in the literature.20 Thus, the
hypothesis of locally frozen is a generalization of that of
frozen turbulence.

Equation �20� allows one to express the spatial-temporal
covariance function BTT�R1 , t1 ;R2 , t2� in terms of the spatial
covariance function BTT

s �R1 ,R2�. Using this equation, we
have:

BTT�R1,t1;R2,t2� � �T�R1,t1�T�R2,t2��T,Ṽ

= �T�R1,t1�T�R2 − Ṽ�R2,t1��,t1��T,Ṽ.

�21�

Here, � �T,Ṽ denotes the average over an ensemble of realiza-

tions of the random fields T and Ṽ. These fields are uncor-
related in the model of homogeneous isotropic turbulence
which is used in this paper.24 Assuming Gaussian probability
density distribution, these random fields are statistically in-
dependent. Therefore, in the right-hand side of Eq. �21�, one
can first calculate the average over an ensemble of realiza-
tions of T which yields the spatial covariance function BTT

s

by definition. Taking into account that �=R2−R1, we have

BTT��,�� = �BTT
s �� − Ṽ�R2,t1����Ṽ. �22�

The average on the right-hand side of this formula is calcu-
lated in the Appendix. The result is

BTT��,�� = �̃T
2 exp�−

�� − V0�t1���2

l̃T
2 � , �23�

where the effective variance �̃T
2 and the square of correlation

length l̃T
2 are given by

�̃T
2 =

�T
2

�1 + 2��V�

lT
	2�3/2 , l̃T

2 = lT
2 + 2�V

2�2. �24�

Note that Eqs. �23� and �24� can also be derived from Eq.
�31.29� in Ref. 24. The latter equation gives a formula for a
Fourier transform of BTT�� ,�� with respect to � and �, valid
for an arbitrary spatial covariance function and probability
density distribution.

Similarly to the derivation of Eq. �23�, one can obtain a
formula for the spatial-temporal covariance function of the
longitudinal velocity fluctuations and, then, formulas for
Buu�� , t� and Buv�� , t�:

Buu��,t� = �̃V
2 exp�−

�� − V0�t1���2

l̃V
2 �

��1 −
��y − v0�t1���2 + ��z − w0�t1���2

l̃V
2 	 ,
�25�
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Buv��,t� = �̃V
2 exp�−

�� − V0�t1���2

l̃V
2 �

�
��x − u0�t1�����y − v0�t1���

l̃V
2

, �26�

where

�̃V
2 =

�V
2

�1 + 2��V�

lV
	2�3/2 , l̃V

2 = lV
2 + 2�V

2�2. �27�

Equations �23�–�27� provide analytical formulas for the
spatial-temporal covariance functions of temperature and ve-
locity fluctuations for the considered case of locally frozen
turbulence. In the limiting case �V=0 and time-independent
V0, these formulas coincide with those for frozen
turbulence.19 It follows from Eqs. �23�–�27� that the depen-
dence of the spatial-temporal covariance functions on �
manifests in three effects: The spatial arguments of the co-
variance functions are shifted by the vector V0�t1��, and the
effective variances of the fluctuations decrease while the ef-
fective correlation lengths increase with the increase in �.

A necessary condition of applicability of the hypothesis
of locally frozen turbulence is formulated in Ref. 24:

�V � �V0� . �28�

In this paper, we consider the case when the mean wind
velocity V0 can slowly depend on time t. This imposes an
additional necessary condition of applicability of the hypoth-
esis of locally frozen turbulence:

�V0�t� − V0�t1�� � �V0�t1�� , �29�

where t� �t1 , t2�. As far as we know sufficient conditions of
applicability of the hypothesis of locally frozen turbulence
have not been obtained. They should probably include a limi-
tation on the time interval �= t2− t1 during which this hypoth-
esis is valid.

IV. ESTIMATION OF THE ERRORS

In this section, the variances �qi
2 of the uncertainties �qi

in the input data d are calculated. It follows from Eq. �11�
that these variances depend on the variances of mean squared

errors �̂c
2, �̂T

2, �̂u
2, and �̂v

2 in reconstruction of ĉ0, T̂0, û0, and
v̂0. Therefore, we first estimate these errors.

Let sb
2 be the estimated variance of components bi of the

vector b which appears in the right-hand side of Eq. �5�.
Using a residual estimation,16 we have

sb
2 =

�b − Gf̂�T�b − Gf̂�
I − 3

, �30�

where I−3 is a number of independent degrees of freedom in
the numerator of Eq. �30�. The mean squared errors �

f̂

2
of the

vector f̂ are diagonal elements of its covariance matrix16 �
f̂

2

ˆˆ
=diag�Rff�. Here
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Rf̂f̂ = sb
2�GTG�−1. �31�

Using Eqs. �7� and �10� and neglecting the terms of order
�û0 / ĉ0�2 and �v̂0 / ĉ0�2, the mean squared errors �̂c

2, �̂T
2, �̂u

2,
and �̂v

2 can be expressed in terms of the mean squared errors
�

f̂

2
:

�̂c
2 = ĉ0

4�
f1
ˆ

2
, �̂T

2 =
4ĉ0

2

��Ra�2 �̂c
2, �̂u

2 = ĉ0
4�

f̂2

2
, �̂v

2 = ĉ0
4�

f̂3

2
.

�32�

Once the errors �̂c
2, �̂T

2, �̂u
2, and �̂v

2 are known, it is pos-
sible to estimate the variances �qi

2 of the errors in the input
data qi�t� for TDSI. The errors in qi�t� are due to errors in Li,
sxi, and syi caused by uncertainties in transducers positions,
errors in measurements of ti

tr, and errors in the reconstruction

of ĉ0�t�, T̂0�t�, û0�t�, and v̂0�t�. As Li
2= �xi−x0i�2+ �yi−y0i�2,

where �xi ,yi� and �x0i ,y0i� are the coordinates of the receiver
and source, respectively, one can calculate the uncertainties
in the sound propagation paths �Li

taken into account that
cos �i= �xi−x0i� /Li and sin �i= �yi−y0i� /Li:

�Li
= ���xi

− �x0i
�cos �i + ��yi

− �y0i
�sin �i� . �33�

Here, �xi
, �x0i

, �yi
, and �y0i

are uncertainties in the trans-
ducer positions. Therefore, from Eq. �12� the uncertainty �qi
is

�qi
= ��xi

− �x0i
��ĉ0 cos �i − û0� + ��yi

− �y0i
�

��ĉ0 sin �i − v̂0� + �Li − 2ĉ0ti
tr��c0

− Li��u0
cos �i + �v0

sin �i� − ĉ0
2�ti

, �34�

and, as û0� ĉ0, v̂0� ĉ0, and ĉ0ti
tr�Li, the variance �qi

2

= ��qi

2 � of the errors in qi is

�qi

2 � 2�r
2ĉ0

2 + Li
2��̂c

2 + �̂u
2 cos2 �i + �̂v

2 sin2 �i� + ĉ0
4�t

2,

�35�

where �r
2 is the variance of the errors in the transducer posi-

tions ��r
2= ��xi

2 �= ��x0i

2 �= ��yi

2 �= ��y0i

2 ��, and �t
2 is the variance

of an error in measurement of ti
tr.

V. ACOUSTIC TOMOGRAPHY EXPERIMENT

In this section, a developed theory of TDSI is applied to

reconstruction of temperature T̃ and wind velocity Ṽ fields in
the acoustic tomography experiment STINHO carried out by
scientists from the University of Leipzig.9 The experiment
was a part of a larger meteorological experiment to study
turbulence, turbulent fluxes, and other meteorological param-
eters over heterogeneous surface.

The tomography array consisted of eight sources
S1, . . . ,S8 and twelve receives R1, . . . ,R12, see Fig. 1. The
size of the array was 300 m�440 m. The sources and re-
ceivers were located above the ground at an average height
of 2 m. Most of the ground within the tomography array was
covered with grass except for a spot of bare soil which was
in the lower left corner of the array with the size of 90 m

�300 m. This inhomogeneity might create the fluctuation of
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temperature and wind velocity fields which is subject of re-
construction by TDSI. Besides, the difference between mean
temperatures over different surfaces was negligible �unlike
the difference in turbulent heat fluxes�, and horizontal wind
velocities were quite close �see Fig. 2 in the Ref. 9�. The
travel times ti

tr of sound propagation between sources and
receivers were measured every minute during 6 July 2002.

FIG. 1. �Color online� The layout of sources �S1, . . . ,S8� and receivers
�R1, . . . ,R12� in the acoustic tomography experiment STINHO �Ref. 9�.
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Our reconstruction of temperature T̃ and wind velocity

Ṽ fields in this acoustic tomography experiment consisted in

reconstruction of their mean values T̂0�t�, û0�t�, and v̂0�t� and

fluctuations T̂�R , t�, û�R , t�, and v̂�R , t� as described in Sec.

II. The input experimental data for reconstruction of T̂0�t�,
û0�t�, and v̂0�t� were ti

tr, Li, and �i. The reconstructed mean
values of temperature and two components of wind velocity
for the 10 min time interval �5:26–5:35 a.m., Coordinated
Universal Time �UTC�, which is also known as Greenwich
Mean Time� are plotted in Fig. 2 as solid lines. Using Eq.
�32�, the errors �̂T, �̂u, and �̂v in reconstruction of the mean
fields were calculated. These errors are plotted in Fig. 2 as
vertical bars.

Then, the obtained values of T̂0�t�, û0�t�, and v̂0�t� and
experimental values of ti

tr were used to calculate the compo-
nents qi�t� of the input data d for reconstruction of fluctua-

tions T̂�R , t�, û�R , t�, and v̂�R , t� using TDSI. To apply
TDSI, we also needed to know the variances �qi

2 of errors in
qi�t�, and parameters �T, �V, lT, and lV of the covariance
functions BTT�� ,�� and Bij�� ,��. The variances �qi

2 were cal-
culated using Eq. �35�, where �̂c

2, �̂u
2, and �̂v

2 were obtained
from Eq. �32�, whereas �r

2 and �t
2 were estimated in the

tomography experiment9 to be as follows: �r=3 cm and �t

=0.3 ms. The variances of temperature and velocity fluctua-
tions, �T and �V, were assumed to be the same as the vari-
ances measured in situ by a sonic thermometer-anemometer:
�T=0.27°C and �V=0.28 m/s. The correlation lengths lT

and lV were chosen as follows: lT= lV=75 m. The values of lT

and lV determine a characteristic size of fluctuations T̂�R , t�,
û�R , t�, and v̂�R , t� which can be resolved in reconstruction.
Note that, for the considered experiment, the values of lT and
lV could not be chosen significantly less than 75 m since the
errors in reconstruction of the fluctuations increase with de-
creasing lT and lV.13 Finally, to apply TDSI to the reconstruc-

tion of the fluctuations T̂�R , t�, û�R , t�, v̂�R , t�, three con-

FIG. 2. �Color online� The reconstruc-
tion of the mean fields at 5:26–5:30
a.m. UTC on 6 July 2002 by TDSI
�solid lines� and SIRT �dashed lines�.
The vertical bars indicate the esti-
mated errors of mean field reconstruc-
tion by TDSI.
Vecherin et al.: Time-dependent stochastic inversion 1421



secutive sets of the travel times ti
tr were used. �In future

tomography experiments, it would be desirable to increase
the number of such sets by decreasing a time interval be-

tween measurements of ti
tr�. After the fluctuations T̂�R , t�,

û�R , t�, and v̂�R , t� were reconstructed, the total fields T̃, ũ,
and ṽ were obtained as the sums of the mean fields and
fluctuations.

Figure 3�a� shows the fields T̃, ũ, and ṽ reconstructed at
5:30 a.m. UTC �In the reconstruction, the travel times ti

tr

measured at 5:29, 5:30, and 5:31 a.m. were used.� “Cold”
and “warm” temperature eddies with different scales can be
seen in Fig. 3�a�. High and low speed velocity eddies can
also be seen. Figure 4 contains the expected root mean
squared errors �RMSE� of the reconstruction of temperature
and wind velocity fields shown in Fig. 3�a�. These errors are
calculated with the use of Eq. �16�. The spatially averaged
RMSE of temperature reconstruction is 0.36 °C. This error is
less than the temperature differences between cold and warm
eddies which can be seen in Fig. 3�a�. Therefore, these cold
and warm eddies are reliably reconstructed. The spatially
averaged RMSE of ũ and ṽ reconstruction are 0.35 and
0.25 m/s, respectively. These errors are also less than the
velocity differences between the low and high speed eddies
which can be seen in Fig. 3�a�.

The reconstructed values of temperature were compared
with those measured by two in-situ sensors located within
the tomographic area. The results of this comparison and the

FIG. 3. �a� The TDSI reconstruction of temperature �°C� and wind velocity
temperature fluctuations �°C� reconstructed by �left� TDSI and �right� SIRT
mean wind during the interval of averaging.
coordinates of the sensors are presented in Table I. Accord-
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ing to Table I, the reconstructed values of temperature are in
a good agreement with the direct measurements: The dis-
crepancy is 0.1 °C at the location of the first sensor and
0.01 °C at the location of the second sensor. These discrep-
ancies are smaller than the estimated errors of the reconstruc-
tion, which are of order 0.4 °C.

For the considered tomography experiment, the tempera-
ture and wind velocity fields were also reconstructed in Ref.
9 using a Simultaneous Iterative Reconstruction Technique
�SIRT� algorithm. SIRT is an algebraic algorithm which does
not use a priori information about covariance functions of
turbulent fields. It is worthwhile to compare the results pre-
sented in Ref. 9 with those obtained by TDSI. Note that the
SIRT algorithm used in Ref. 9 is also a two step procedure.
In the first step, the travel times ti

tr are split into tiT
tr and tiV

tr ,

where tiT
tr are affected only by the temperature field T̃,

whereas tiV
tr are affected only by the velocity field Ṽ �for

details see Ref. 8�. In the second step, the SIRT algorithm is
used to reconstruct the temperature and velocity fields from
tiT
tr and tiV

tr , respectively. In Fig. 2, the dashed lines correspond
to the mean values of the temperature and two components
of wind velocity reconstructed by SIRT. Comparison of these
lines with the solid ones �obtained by TDSI� shows that there

is an acceptable agreement in reconstruction of T̂0�t�, û0�t�,
and v̂0�t� by two algorithms. The root mean squared discrep-
ancy between values obtained by SIRT and TDSI is 0.47 °C

ˆ ˆ ˆ

fields at 5:30 a.m. UTC on 6 July 2002. �b� The 10 min averaged fields of
black lines in the TDSI reconstruction show the direction of reconstructed
�m/s�
. The
for the T0, 0.16 m/s for the u0, and 0.47 m/s for the v0.

Vecherin et al.: Time-dependent stochastic inversion



Figure 3�b� shows the temperature fluctuations T̂ aver-
aged over 10 min and reconstructed with the use of TDSI

and SIRT. The SIRT reconstruction of T̂ was taken from Ref.
9 �see Fig. 4 in that reference� and then the temperature field
was interpolated �2D linear interpolation� to have the same
spatial grid as that used in TDSI. It follows from Fig. 3�b�
that the reconstructed fields are similar on large scales of
turbulent eddies. In the lower left-hand corner of Fig. 3�b�,
one can see a cold temperature eddy which is stretched at
about 45° with respect to the x axis. Further, there are two
warm eddies in the right upper and lower corners. However,
there are differences in the reconstructed fields in details.
According to the TDSI reconstruction, the cold eddy in the
left lower corner is more distinctive, narrower and longer
than that reconstructed by SIRT. The shape of the warm eddy
in the upper right-hand corner is also more stretched along
the diagonal and centered at a different position. It is worth-
while to note that, in TDSI, the deformation of the turbulent
eddies along the diagonal coincides with the direction of
reconstructed mean wind during the interval of averaging
�black lines in Fig. 3�b�, left plot�.

The estimated RMSE for the TDSI and SIRT reconstruc-
tions are shown in Fig. 5. Note that the errors of the recon-

TABLE I. Comparison of the reconstructed and in situ measured values of
temperature.

Landscape type Coordinated �m� Humitter T �°C� TDSI T �°C�

Bare soil x=28, y=138 16.24 16.14
Grassland x=182, y=143 15.78 15.77
FIG. 5. �Color online� The expected root mean squared
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struction by TDSI are of order 0.1 °C, and are approximately
one-half the SIRT errors.

VI. CONCLUSIONS

In this paper, the TDSI methodology for acoustic tomog-
raphy of the atmosphere was further developed. First, the
formulas for the spatial-temporal covariance functions of
temperature and wind velocity fluctuations for the case of
locally frozen turbulence were derived. These formulas are
more general than those for the case of frozen turbulence and
account for the variance of velocity fluctuations. Second, the
formulas for the variances of the errors in the input data in
TDSI were derived.

The developed TDSI was, for the first time, used in the
reconstruction of temperature and wind velocity fields in an
acoustic tomography of the atmosphere experiment
�STINHO experiment9�. The reconstructed temperature and
wind velocity fields and the errors in the reconstruction were
presented. It was shown that the use of TDSI allowed us to
reliably reconstruct temperature and velocity eddies within
the tomographic area. The temperature field reconstructed by
TDSI was compared with that reconstructed by the SIRT
method. The fields reconstructed by these two approaches
are similar on large scales while different in details. TDSI
yields a more detailed reconstruction with the errors in about
one-half those in SIRT.

Note that the STINHO experiment was not designed to
take the full advantages of TDSI. In future experiments, it is
worthwhile to fully exploit these advantages. For example, it
would be worthwhile to reduce the time intervals between
consecutive travel time measurements.
errors in the reconstructions shown in Fig. 3�b�.

Vecherin et al.: Time-dependent stochastic inversion 1423



uared
ACKNOWLEDGMENTS

This material is partly based upon work that was sup-
ported by the U.S. Army Research Office under Contract
Nos. DAAD19-03-1-0104 and W911NF-06-1-0007. The
STINHO project was performed as a part of the VERTICO
�VERTIcal transports of energy and trace gases at anchor
stations under COmplex natural conditions� network which
was funded by the German Federal Ministry of Education
and Research �BmBF� in the framework of the AFO-2000
research program �Grant No. 07ATF37�.

APPENDIX: SPATIAL-TEMPORAL COVARIANCE
FUNCTION FOR LOCALLY FROZEN TURBULENCE

In this appendix, we derive a formula for the spatial-
temporal covariance function of temperature fluctuations for
the case of locally frozen turbulence. A starting equation for
this derivation is Eq. �22�. Substituting the value of BTT

s from
Eq. �17� into Eq. �22�, we have

BTT��,�� = �T
2�exp�−

��x − ũ��2

lT
2 −

��y − ṽ��2

lT
2

−
��z − w̃��2

lT
2 	�

Ṽ

. �A1�

We will assume that the random 3D field Ṽ�R , t� is normally
distributed with the variance �

Ṽ

2
independent of spatial coor-

dinates and time: �
Ṽ

2
= �Ṽ2�R , t��= �u2�R , t��+ �v2�R , t��

+ �w2�R , t��=3�V
2 . Its mathematical expectation is V0�t�

= �u0�t� ,v0�t� ,w0�t��. Note that different components of

Ṽ�R , t� are uncorrelated in the theory of homogeneous iso-
tropic turbulence which is used in this paper. Indeed, as tur-
bulence is stationary, at any time t the cross correlations

˜ ˜ ˜

FIG. 4. �Color online� The expected root mean sq
between two different components of V, e.g., u and v, are
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described byBuv
s given by Eq. �19�. It follows from this equa-

tion that the cross correlation at a fixed point ��x=�y =�z

=0� is equal to zero. If components of a multidimensional
normally distributed variable are uncorrelated then they are
independent. Statistical independence of different compo-

nents of Ṽ�R , t� allows one to express Eq. �A1� in the fol-
lowing form:

BTT��,�� = �T
2IxIyIz, �A2�

where Ix= �exp�−��x− ũ��2 / lT
2��ũ, and Iy and Iz are given by

similar formulas. Let �= ��x− ũ�� / lT. Then Ix can be written
as Ix= �exp�−�2���. Note that a random function � is nor-
mally distributed as �x, lT, and � are nonrandom quantities
and ũ is a normally distributed random function. Therefore,
� has a Gaussian probability density

p��w� =
1

��
�2	

exp�−
�w − ����2

2��
2 �

with its mean value ��� and variance ��
2 given by

��� =
�x − u0�t1��

lT
, ��

2 =
�V

2�2

lT
2 �A3�

Then

Ix = 

−





exp�− w2�p��w�dw =
1

�1 + 2��
2

exp� ���2

1 + 2��
2 	 .

�A4�

Similar results can be obtained for Iy and Iz. Substituting
Eq. �A4� and similar formulas for Iy and Iz into Eq. �A2�, we
obtain an analytical formula for BTT�� ,��. This formula is
given by Eq. �23�.
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